Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.
It has two major branches, differential calculus and integral calculus; differential calculus concerns instantaneous rates of change, and the slopes of curves, while integral calculus concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus, and they make use of the fundamental notions of convergence of infinite sequences and infinite series to a well-defined limit.
Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Later work, including codifying the idea of limits, put these developments on a more solid conceptual footing. Today, calculus has widespread uses in science, engineering, and social science.
In mathematics education, calculus denotes courses of elementary mathematical analysis, which are mainly devoted to the study of functions and limits. The word calculus is Latin for "small pebble" (the diminutive of calx, meaning "stone"), a meaning which still persists in medicine. Because such pebbles were used for counting out distances, tallying votes, and doing abacus arithmetic, the word came to mean a method of computation. In this sense, it was used in English at least as early as 1672, several years prior to the publications of Leibniz and Newton.
In addition to the differential calculus and integral calculus, the term is also used for naming specific methods of calculation and related theories which seek to model a particular concept in terms of mathematics. Examples of this convention include propositional calculus, Ricci calculus, calculus of variations, lambda calculus, and process calculus. Furthermore, the term "calculus" has variously been applied in ethics and philosophy, for such systems as Bentham's felicific calculus, and the ethical calculus.
While many of the ideas of calculus had been developed earlier in Greece, China, India, Iraq, Persia, and Japan, the use of calculus began in Europe, during the 17th century, when Newton and Leibniz built on the work of earlier mathematicians to introduce its basic principles. The Hungarian polymath John von Neumann wrote of this work,
The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics, and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking.
Applications of differential calculus include computations involving velocity and acceleration, the slope of a curve, and optimization.: 341–453 Applications of integral calculus include computations involving area, volume, arc length, center of mass, work, and pressure.: 685–700 More advanced applications include power series and Fourier series.
Calculus is also used to gain a more precise understanding of the nature of space, time, and motion. For centuries, mathematicians and philosophers wrestled with paradoxes involving division by zero or sums of infinitely many numbers. These questions arise in the study of motion and area. The ancient Greek philosopher Zeno of Elea gave several famous examples of such paradoxes. Calculus provides tools, especially the limit and the infinite series, that resolve the paradoxes.
This app is a collection of famous detective fiction books that have...
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the...
Sir Arthur Ignatius Conan Doyle KStJ DL (22 May 1859 – 7...
This William Shakespeare Library app is filled with the collection of the...
This app is a collection of famous philosophy books that have been...
This app is a collection of famous science fiction (sci-fi) books that...
Created with AppPage.net
Similar Apps - visible in preview.