SOME OF THE CHAPTERS ARE :-
1. The Ionic Hypothesis and Neuron Models
2. Fields and Waves in Excitable Cellular Structures
3. Multi-Layer Learning Networks
n studying the recent literature in neurophysiology, one is immediately struck by the diversity in form of both elicited and spontaneous electrical activity in the single nerve cell. This applies not only to the temporal patterns of all-or-none action potentials but also to the graded somatic and dendritic potentials. The synaptic membrane of a neuron, for example, is often found to be electrically inexcitable and thus incapable of producing an action potential; yet the graded, synaptically induced potentials show an amazing diversity in form. In response to a presynaptic impulse, the postsynaptic membrane may become hyperpolarized (inhibitory postsynaptic potential), depolarized (excitatory postsynaptic potential), or remain at the resting potential but with an increased permeability to certain ions (a form of inhibition). The form of the postsynaptic potential in response to an isolated presynaptic spike may vary from synapse to synapse in several ways, as shown in Figure 1. Following a presynaptic spike, the postsynaptic potential typically rises with some delay to a peak value and then falls back toward the equilibrium or resting potential. Three potentially important factors are the delay time (synaptic delay), the peak amplitude (spatial weighting of synapse), and the rate of fall toward the equilibrium potential (temporal weighting of synapse). The responses of a synapse to individual spikes in a volley may be progressively enhanced (facilitation), diminished (antifacilitation)
Find out how much time you have left with your loved onesTime...
The health tool designed by you, for you. Track and reflect on...
Created with AppPage.net
Similar Apps - visible in preview.